
Robust Multimodal Brain Tumor
Segmentation via Feature

Disentanglement and Gated Fusion

Cheng Chen1(B), Qi Dou2, Yueming Jin1, Hao Chen1,3, Jing Qin4,
and Pheng-Ann Heng1,5

1 Department of Computer Science and Engineering, The Chinese University of Hong
Kong, Sha Tin, Hong Kong
cchen@cse.cuhk.edu.hk

2 Department of Computing, Imperial College London, London, UK
3 Imsight Medical Technology Co. Ltd., Shenzhen, China

4 Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic
University, Kowloon, Hong Kong

5 Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality
Technology, SIAT, Chinese Academy of Sciences, Shenzhen, China

Abstract. Accurate medical image segmentation commonly requires
effective learning of the complementary information from multimodal
data. However, in clinical practice, we often encounter the problem of miss-
ing imaging modalities. We tackle this challenge and propose a novel mul-
timodal segmentation framework which is robust to the absence of imag-
ing modalities. Our network uses feature disentanglement to decompose
the input modalities into the modality-specific appearance code, which
uniquely sticks to each modality, and the modality-invariant content code,
which absorbs multimodal information for the segmentation task. With
enhanced modality-invariance, the disentangled content code from each
modality is fused into a shared representation which gains robustness to
missing data. The fusion is achieved via a learning-based strategy to gate
the contribution of different modalities at different locations. We validate
our method on the important yet challenging multimodal brain tumor seg-
mentation task with the BRATS challenge dataset. With competitive per-
formance to the state-of-the-art approaches for full modality, our method
achieves outstanding robustness under various missing modality(ies) situ-
ations, significantly exceeding the state-of-the-art method by over 16% in
average for Dice on whole tumor segmentation.

1 Introduction

Accurate segmentation of brain tumor is of critical importance for quantita-
tive assessment of tumor progression and preoperative treatment planning. The
measurement of tumor-induced tissue changes relies on complementary biological
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information provided in multiple Magnetic Resonance Imaging (MRI) modali-
ties, i.e., FLAIR, T1, T1 contrast-enhanced (T1c), and T2. Joint learning from
these multimodal images greatly helps to improve segmentation accuracy. A
plentiful of multimodal methods have been developed for automated brain tumor
segmentation, by either concatenating multiple MRI modalities as inputs [8,18],
or fusing higher-level features from each modality in latent space [5,14]. How-
ever, availability of a full set of the desired modalities is not always guaranteed in
real-world scenarios, due to various scanning protocols and diverse patient con-
ditions. In this regard, robustness to one or more missing modality(ies) during
inference is essential for a widely-applicable multimodal learning method.

A typical solution is to synthesize the missing modality(ies) with available
ones [15]. Such method requires to build a specific model for each modality from
all possible combinations of available modalities, which is complicated. Alter-
natively, Havaei et al. [6] propose hetero-modal image segmentation (HeMIS),
which fuses multimodal information by computing statistics (i.e., mean and vari-
ance) across individual features. This method is easily scalable to various data
missing situations, as the fusion in latent space adapts to any number of modal-
ities. Furthermore, Chartsias et al. [2] and Van Tulder et al. [16] enhance the
modality-invariance of latent representations by minimizing the L1 or L2 dis-
tance of features from different modalities. However, different MRI modalities
vary in intensity distributions with modality-specific appearance, thus simply
encouraging the features from different modalities to be close under L1- or L2-
Norm may not achieve optimal representations with desired modality-invariance.
Instead, a concurrent work [12] uses adversarial learning to ensure the model gen-
erate similar features under missing modalities as in a full modality situation.

To effectively extract modality-invariant representations conveying essential
content of tumor, learning to cancel out the modality-specific information may
be helpful. This can be achieved using feature disentanglement by decomposing
inputs to latent space of interpretable factors [7,13]. In medical imaging, disen-
tangling representations has recently demonstrated effectiveness for liver lesion
classification [1], myocardial segmentation [3] and multimodal deformable regis-
tration [11]. However, these works are for uni-modal or bi-modal data. To our
best knowledge, the potential of feature disentanglement for robust multimodal
segmentation at arbitrary modality number has not been tapped yet.

We propose a novel multimodal learning framework with feature disentangle-
ment and gated feature fusion, which is robust to missing modalities. Our net-
work disentangles multimodal features into modality-specific appearance code
and modality-invariant content code. The content code of each modality is fused
into a shared representation containing discriminative information for segmen-
tation task. To enhance its modality-invariance, the shared representation is
required to reconstruct any modality given corresponding appearance code, even
in the absence of some modality(ies). Furthermore, we employ a novel gated fea-
ture fusion strategy to automatically learn weight maps and gate the contribution
from different modalities at different locations. We validate our proposed method
on the task of multimodal brain tumor segmentation with BRATS challenge [10].
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Fig. 1. Proposed multimodal segmentation framework. Left: Feature disentanglement
for multimodal learning. Right: Detailed structure of the gated feature fusion module.

With competitive performance to the state-of-the-art methods for full modality,
our method is highly robust to various missing modality(ies) situations.

2 Method

An overview of our proposed multimodal segmentation framework is in Fig. 1. We
first introduce feature disentanglement to encode multimodal inputs to modality-
specific appearance code and modality-invariant content code. Next, we present
a learning-based gating strategy for integrating the complementary disentangled
content code from individual modality to a more expressive fused representation,
and detailed learning process and network architecture are described in the end.

2.1 Feature Disentanglement for Robust Multimodal Learning

We denote the multimodal images by {x1, ..., xM}, where M = 4 in our brain
tumor segmentation task. Each modality xi is input to its own appearance
encoder Ea

i and content encoder Ec
i , and we correspondingly obtain its dis-

entangled appearance code ai = Ea
i (xi) and content code ci = Ec

i (xi). For the
appearance code, we follow the common practice in [9] and set it as a 8-bit vec-
tor assuming its prior distribution to be a centered isotropic Gaussian N (0, I ).
The Kullback-Leibler (KL) divergence is computed to encourage the estimated
distribution of p(ai) to be as close to the normal distribution. In this way, we
obtain the loss of LKL =

∑M
i=1 E[DKL(p(ai)||N (0, I ))] for training the appear-

ance encoders {Ec
i }.

Next, for the content code {ci} which is expected to gain modality-invariance
after evaporating the stylized appearances of different image modalities, we fuse
them into an integrated representation z = F({ci}) expressing essential semantic
contents of the tumor. F is an automatically learned fusion strategy for which we
will elaborate in Sect. 2.2. From the perspective of successful disentanglement,
the obtained content representation z should enable to be re-rendered into the
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original image given any appearance code of a certain modality. To encourage
such reconstruction capability, we develop the pseudo-cycle-consistency loss by
introducing a set of modality-specific decoders {Dr

i }, as follows:

Lrec =
M∑

i=1

||Dr
i (z, ai) − xi||1,where z = F(δic1, ..., δMcM ), (1)

where we employ the L1-Norm to alleviate the generated images getting blurred.
With a Bernoulli indicator δi, we are aiming to grant the content representation z
extra robustness to missing data, i.e., still producing a high-quality reconstructed
x̂i = Dr

i (z, ai) even in the absence of ci when fusing content codes. We perform
the modality dropout in latent space by randomly setting δi to 0, which turns
off the content code ci in current learning iteration.

After the disentanglement procedure which cancels out the effect of modality-
specific appearance features while aggregates the complementary content infor-
mation from arbitrary combination of multimodal data, we can perform accu-
rate and robust brain tumor segmentation. We build a segmentation decoder
Ŷ = Ds(z) which learns discriminative pattern based on our derived represen-
tative and robust z. We jointly use Dice loss and weighted cross-entropy loss to
handle the unbalanced object sizes in multi-class segmentation:

Lseg = Dice(Ŷ , Y ) + H(Ŷ , Y ) = −
∑

k∈K

(
2

∑N
j=1 yk

j ŷk
j

∑N
j=1 yk

j yk
j + ŷk

j ŷk
j + ε

+

N∑

j=1

wk · yk
j log qkj

)
,

(2)
where yk

j , qkj , ŷk
j respectively denote the ground truth, probability prediction and

one-hot output of voxel j for class k. Directly combing the two types of segmen-
tation loss works well in practice, without need of particularly tuning a balancing
weight between them. The ε = e−7 is a constant for numerical stabilization, and
wk is calculated online in a batch, treating class imbalance in cross-entropy loss.

2.2 Multimodal Content Fusion with Learned Gating

Effectively fusing the complementary information from various modalities is cru-
cial in a multimodal learning framework. This also holds for our scenario, though
we disentangle the content code and enforce robustness to missing data. In fact,
feature fusion plays a more important role in unusual inference situations such
as unavailability of some modality(ies). If not considered carefully, the fused rep-
resentation would otherwise be infected by the noisy information from empty-
input channel(s), then the model’s performance is inevitably degraded. Exist-
ing approaches tackle this using average [6] or max operation [2]. However, the
average operation makes each modality contribute equally, which may disregard
highly informative features from a certain modality. On the contrary, the max
operation only retains the largest response, neglecting information from all the
others.

Instead of hard-coding a fusion operation, we propose to automatically learn
the mapping function to integrate multimodal features. The contribution weights
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of a modality are not necessarily identical across locations, as a modality contains
different amount of information for areas of each class. For example, T1c shows
clear structure of enhancing tumor, but not for the area of edema. In this regard,
we dynamically learn a weight map to gate the scale of information from each
content code ci, with a flexibility of voxel-by-voxel. Then, the gated content from
individual modalities are fused to form the integrated representation.

Specifically, the disentangled content codes {c1, ..., cM} from each modality
are concatenated, and then input to a convolutional layer with an output channel
of M . With sigmoid activation, we obtain the gating weight matrix G, which can
be split into M separate maps of {g1, ..., gM}, one for each modality. Next, we
re-weight the content code as c̃i = ci ·gi with element-wise multiplication. These
outputs {c̃i} are concatenated and forwarded to a bottleneck 1× 1 convolution,
followed by Leaky ReLU activation. As shown in Eq. (1), we randomly set some
content code(s) to be 0 with {δi} during training, to enhance model’s robustness
to missing data. Overall, we obtain the fused content code z = F(δic1, ..., δMcM ),
which has the same feature map size and channel as individual code ci.

It is worth noting that our learning-based gating strategy is general for mul-
timodal feature fusion, which is superior to existing average or max hard-coding
way, by properly aggregating complementary content with data-dependent
weight. In our framework, we jointly use it with the disentanglement procedure,
and form an accurate and robust end-to-end multimodal learning method.

2.3 Learning Process and Network Architecture

The entire framework is learned with the overall objective function as:

Ltotal(Ds, {Ec
i , E

a
i ,Dr

i }) = Lseg + λLrec + βLKL, (3)

where the λ, β are trade-off parameters weighting the importance of each com-
ponent, which are both empirically set as 0.1 in our experiments. We utilize an
Adam optimizer with an initial learning rate of 1e−4, and progressively multiply
it by (1− epoch/max epoch)0.9 during training. The intensive components with
our model only allow us to set the batch size as 1 using one Nvidia Xp GPU.

Our encoders {Ec
i } and decoder Ds for segmentation task adopt 3D U-Net [4]

architecture, except that one independent encoder is used for each input modal-
ity. In each downsampling stage, the content features of individual modality are
fused via the learning-based gating strategy with 0.5 probability of δi to be zero
for dropping ci. Each fused features are then skip-connected to the corresponding
upsampling stage. Each Ec

i consists of 4 residual blocks with instance normal-
ization and Leaky ReLU activation. Between each block, the image dimensions
are progressively reduced by 2 and the feature channels are doubled. All con-
volutions use kernel size of 3 × 3 × 3 and the initial channel number is 16. The
Ds also has 4 residual blocks which is similar to Ec

i , except that the feature
map size is upsampled by 2 with channel number halved after each stage. For
image reconstruction, we generally follow the practice in [7]. Specifically, each
Ea

i consists of 5 convolutional layers followed by a global average pooling and
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a fully-connected layer to obtain the appearance code. Each Dr
i uses 4 residual

blocks followed by 4 upsampling and convolutional layers to produce x̂i.

3 Experiments

Dataset and Preprocessing. We validate our proposed method with the 2015
Brain Tumor Segmentation Challenge (BRATS) dataset [10]. The training set
consists of 274 cases with ground truth being provided. The test set contains
110 cases with reference labels being held by the organizers and the evaluation

Table 1. Comparison of brain tumor segmentation performance on BRATS 2015 test
set. The values are obtained by submitting our results to the online evaluation system.

Methods Dice (%) Precision (%) Sensitivity (%)

Complete Core EnhancingComplete Core EnhancingComplete Core Enhancing

Kamnitsas et al. [8] 84 67 63 82 85 64 89 62 66

Zhao et al. [17] 82 72 62 84 78 60 83 73 69

OM-Net [18] 86 71 64 86 83 61 88 68 72

Ours 84 72 64 84 80 64 89 69 68

Table 2. Robustness comparison of our method against HeMIS [6] and the imputation
MLP [6] on the test split of BRATS 2015 training set. The Dice score is presented for
every combination case of modalities being available (�) or missing (−).

Modalities Dice (%)

Complete Core Enhancing

F T1 T1c T2 Ours HeMIS MLP Ours HeMIS MLP Ours HeMIS MLP

– – – � 85.49 58.48 61.50 58.66 40.18 37.32 37.66 20.31 18.62

– – � – 71.86 33.46 2.04 72.87 44.55 17.70 70.22 49.93 32.92

– � – – 68.40 33.22 2.07 50.00 17.42 10.52 22.67 4.67 10.78

� – – – 83.02 71.26 63.81 46.67 37.45 34.26 28.30 5.57 15.90

– – � � 87.53 67.59 64.97 78.46 63.39 49.38 76.82 65.38 60.30

– � � – 74.59 45.93 1.99 76.40 55.06 26.55 73.95 62.40 40.93

� � – – 87.66 80.28 78.13 60.17 49.52 48.97 35.28 22.26 25.18

– � – � 87.87 69.56 66.88 64.88 47.26 43.66 41.05 23.56 26.37

� – – � 89.08 82.10 81.35 63.51 53.42 52.41 39.72 23.19 25.01

� – � – 88.01 79.80 81.13 78.09 66.12 65.51 76.62 67.12 66.19

� � � – 87.73 80.88 82.19 80.68 69.26 69.34 78.81 71.30 70.93

� � – � 89.07 83.87 80.40 65.99 57.76 53.46 43.04 28.46 28.34

� – � � 89.06 82.78 83.37 79.47 70.62 70.45 78.07 70.52 70.56

– � � � 88.26 70.98 67.85 80.84 66.60 55.40 78.56 67.84 64.81

� � � � 89.07 83.15 82.43 81.19 72.50 71.46 79.13 75.37 72.08

Average 84.45 68.22 60.01 69.19 54.07 47.09 57.33 43.86 41.93
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Fig. 2. Segmentation results from our method for complete tumor (yellow), tumor core
(red), and enhancing tumor (blue). Input modalities at inference are indicated. (Color
figure online)

can be obtained via an online system. Each case contains four MRI modalities
including FLAIR, T1, T1c, and T2. The task of the challenge is to segment
three tumor classes, i.e. complete, core, and enhancing tumor. The dataset is
preprocessed with being skull-stripped, co-registered, and resampled to isotropic
1mm3 resolution, by the organizer. We further normalized the intensity of each
volume to zero mean and unit variance within the brain tissue area. A patch of
size 80×80×80 was randomly cropped during training as input to the network.

Performance of Robust Brain Tumor Segmentation. We first compare
our method with the state-of-the-art methods on the test set of BRATS 2015 for
full modalities. Results were obtained directly from the online evaluation sys-
tem and compared without postprocessing. In Table 1, our method achieves the
highest Dice score of the core and enhancing tumor, with the other evaluations
highly competitive with the ranking 1st approach OM-Net [18], validating the
effectiveness of our segmentation backbone.

We then evaluate the robustness of our method to missing modality inference.
The absence of modality i is implemented by setting δi to be zero for dropping ci
at inference. For direct comparison with the HeMIS method and image synthe-
sis method using multilayer perceptron (MLP) [6], we used the same data split
of BRATS training set as in [6] and directly referenced the results from their
paper. In Table 2, our method significantly outperforms the HeMIS and imputa-
tion MLP methods for all the 15 possible combination situations of unavailable
modalities and all the three tumor classes. This demonstrates the outstanding
robustness of our multimodal segmentation method. From the results, we can
see that FLAIR and T2 modalities are more informative than others for the
complete tumor segmentation, and T1c is discriminative for accurate prediction
of enhancing tumor. In Fig. 2, we show that with the increase of the number of
missing modalities, the segmentation results produced by our robust model just
gradually degrade, rather than encountering sudden failure. Even with T1 alone,
we can achieve decent segmentation for the complete tumor and tumor core.
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Fig. 3. (a) Ablation study of key components in our method. (b) Example reconstruc-
tion of FLAIR and T2 images for different combinations of input modalities.

Ablation Study. We investigate the effectiveness of feature disentanglement
and gated fusion, as two key components in our method. We first set up a
baseline network which uses average fusion without feature disentanglement.
Then we add the feature disentanglement and gated fusion one by one into the
baseline network. In Fig. 3(a), we compare the performance of the three networks
on the Dice score, averaging over the 15 possible combination situations of input
modalities. Both the feature disentanglement and gated fusion bring performance
improvement across all the tumor parts, achieving the highest Dice score in most
situations (10, 13, and 11 situations out of 15 for the complete tumor, tumor core,
and enhancing tumor respectively). Figure 3(b) shows the reconstruction results
of FLAIR and T2 image by combining their corresponding appearance code
with the shared representation fused from content code of different combination
of input modalities. Even when some modality(ies) are missing, our network can
still reconstruct the missing modality with the shared representation, indicating
that the shared representation z successfully yields the essential tumor content.

4 Conclusion

We propose a novel multimodal segmentation framework which jointly uses the
feature disentanglement and gated feature fusion to obtain a modality-invariant
and discriminative representation. We validate our method on brain tumor seg-
mentation under both full modalities and various combination situations of miss-
ing modalities, achieving new state-of-the-art results on BRATS benchmark.
The outstanding robustness to great inference variations can make our method
widely-applicable in real-world clinical scenarios.
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